

Nonlinear Elimination Preconditioned Newton's Method for Hyperelasticity with Application in Arterial Wall simulations

Anisotropic Hyperelastic Model

Arterial wall can be modeled by a nearly incompressible, anisotropic and hyperelastic equation that allows large deformation.

Energy Functional

 $\psi = \psi^{iso}(\mathbf{C}) + \psi^{vol}(\mathbf{C}) + \psi^{ti}(\mathbf{C}, \mathbf{M}^{(i)}), (1)$ where C is Cauthy-Green tensor, $M^{(i)}$ are the structural tensors.

Principal Invariants

 $I_1 := \text{tr } C, \quad I_2 := \text{tr } [\text{cof } C], \quad I_3 := \text{det } C, \text{ plaques}$ $J_4^{(i)} := \operatorname{tr}[CM^{(i)}], \quad J_5^{(i)} := \operatorname{tr}[C^2M^{(i)}].$ with $\psi^{iso} = \psi^{iso}(I_i), \psi^{vol} = \psi^{vol}(I_3)$ and $\psi^{ti} = \psi^{ti}(I_i, J_i^{(I)}).$

Momentum Equation

div
$$P = -f$$

where $P = FS$, $S = \frac{\partial \psi}{\partial C}$.

Figure 1: A carotid artery with

Figure 2: Collagen fibre reinforcement

To solve nonlinear system (2), the performance of Inexact Newton methods (IN) and the linear solvers degrade in the cases of

(2)

Large Deformation; Near Incompressibility; High Anisotropy.

We use an overlapping Schwarz preconditioner and propose a nonlinearly preconditioned Newton's method based on nonlinear elimination to accelerate the convergence of linear and nonlinear iterations, respectively.

Nonlinear Preconditioning Based on Nonlinear Elimination

Denote the nonlinear system discretized from (2) by

$$F(u^*)=0$$

where $F : \mathbb{R}^n \mapsto \mathbb{R}^n$. Newton's method finds a sequence of improving approximate solutions iteratively $u^{(k+1)} = u^{(k)} - (F'(u^{(k)}))^{-1} F(u^{(k)})$. Convergence of Newton's method:

$$e^{(k+1)} = -\left(F'(u^{(k)})\right)^{-1} \left\langle \frac{1}{2}F''(u^{(k)})e^{(k)}, e^{(k)} \right\rangle + \mathcal{O}(||e^{(k)}||^3).$$

Here $e^{(k)} = u^* - u^{(k)}$ is the error of the kth approximate solution. ► Key idea:

Eliminate some "subfunctions" of *F* to balance the overall nonlinearity. Quantitative characterization of the nonlinearity:

$$egin{aligned} & F(u^{(k+1)}) = F(u^{(k)}) + F'(u^{(k)}) p^{(k)} + \left\langle rac{1}{2} F''(u^{(k)} + heta p^{(k)}) p^{(k)}, p^{(k)}
ight
angle \ & pprox \left\langle F''(u^{(k)} + heta p^{(k)}) p^{(k)}, p^{(k)}
ight
angle . \end{aligned}$$

High nonlinearity \sim Large residual.

- ► Nonlinear elimination:
- Find "bad" DOF set S_b from $S = \{1, \dots, n\}$, according to the residual

$$V_b = \{ v \mid v = (v_1, \cdots, v_n)^T \in \mathbb{R}^n, v_k = 0, \text{ if } k \not\in S_b \}.$$

• Given an approximation u, NE finds correction by solving $u_b \in V_b$ such that

$$F_b(u_b) := R_b F(u_b + u) = 0.$$

Shihua Gong¹ and Xiao-Chuan Cai²

1. Peking University, Beijing, China; 2. University of Colorado, Boulder, CO, USA

Inexact Newton with Nonlinear Elimination Preconditioner

Algorithm (IN-NE)

Step 1. Compute the next approximate solution $u^{(k+1)}$ by solving F(u) = 0

with one step of IN iteration using $u^{(k)}$ as the initial guess. Step 2. (Nonlinearity checking)

2.1 If $||F(u^{(k+1)})|| < \varrho_1 ||F(u^{(k)})||$, go to Step 1.

2.2 Finding "bad" d.o.f. by

 $S_b := \{ j \in S \mid |F_j(u^{(k+1)})| > \varrho_2 \|F(u^{(k+1)})\|_\infty \}.$

And extend S_b to S_b^{δ} by adding the neighboring DOFs. 2.3 If $\#(S_b^{\delta}) < \rho_3 n$, go to Step 3. Otherwise, go to Step 1. Step 3. Compute the correction $\boldsymbol{u}_{\boldsymbol{b}}^{\delta} \in \boldsymbol{V}_{\boldsymbol{b}}$ by solving the subproblem approximately

 $F_b^{\delta}(u_b^{\delta}) := R_b^{\delta}F(u_b^{\delta} + u^{(k+1)}) = \mathbf{0},$

with an initial guess $u_b^{\delta} = 0$. Update $u^{(k+1)} \leftarrow u_b^{\delta} + u^{(k+1)}$. Go to Step 1.

- Three control parameters:
- the tolerance for the reduction of the residual norm; *0*1
- the tolerance to pick up the bad variables and equations; <u>0</u>2
- the tolerance to limit the size of the subproblem. *Q*3

Boundary effect:

- ▶ If the nonlinear elimination just on S_b , the residual near the boundaries of the eliminating domains would become very large.
- To ease this phenomenon, we extend the index set S_b to S_b^{δ} by adding the neighboring DOFs, of which the distances to S_b are smaller than δ .

Test Examples

We consider the polyconvex energy functional

$$\psi_{A} = \psi^{isochoric} + \psi^{volumetric} + \psi^{ti}$$

$$:= c_1 \left(\frac{I_1}{I_3^{1/3}} - 3 \right) + \epsilon_1 \left(I_3^{\epsilon_2} + \frac{1}{I_3^{\epsilon_2}} - 2 \right) + \sum_{i=1}^2 \alpha_1 \left\langle I_1 J_4^{(i)} - J_5^{(i)} \right\rangle$$

Based on the parameter sets of the model ψ_A in Table. 1, we propose three test examples to investigate the performance of our algorithms for the case of large deformation, near incompressibility and high anisotropy.

Se	t Layer	c ₁ (kPa)	ϵ_1 (kPa)	$\epsilon_2(-)$	α_1 (kPa)	$lpha_2$	Purpose
L	_	1.0	1.0	1.0	0.0	0.0	Deformations by differen
C1	-	17.5	4.998	2.4	0.0	0.0	
C2	2 –	17.5	49.98	2.4	0.0	0.0	Different penalties for com
CE	-	17.5	499.8	2.4	0.0	0.0	
A1	Adv.	7.5	100.0	20.0	1.5e10	20.0	Anisotropic arterial w
	Med.	17.5	100.0	50.0	5.0e5	7.0	
A2	Adv.	6.6	23.9	10	1503.0	6.3	
	Med.	17.5	499.8	2.4	30001.9	5.1	
A3	Adv.	7.8	70.0	8.5	1503.0	6.3	
	Med.	9.2	360.0	9.0	30001.9	5.1	

Table 1: Model parameter sets of ψ_A .

The first example simulates the deformations of a cylindrical rod by different pulls $L_1 = 1.e1$ Pa, $L_2 = 1.e2$ Pa and $L_3 = 1.e3$ Pa. The rest examples simulate the artery walls imposing blood pressure **12** kPa.

