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Anisotropic Hyperelastic Model

Arterial wall can be modeled by a nearly incompressible, anisotropic and
hyperelastic equation that allows large deformation.

I Energy Functional

ψ = ψiso(C)+ψvol(C)+ψti(C,M(i)), (1)
where C is Cauthy-Green tensor, M(i) are
the structural tensors.

I Principal Invariants

I1 := tr C, I2 := tr [cofC], I3 := det C,

J(i)
4 := tr[CM(i)], J(i)

5 := tr[C2M(i)].

with ψiso = ψiso(Ii), ψvol = ψvol(I3) and
ψti = ψti(Ii, J

(i)
j ).

I Momentum Equation

divP = −f , (2)
where P = FS,S = ∂ψ

∂C.

Figure 1: A carotid artery with
plaques

Figure 2: Collagen fibre
reinforcement

To solve nonlinear system (2), the performance of Inexact Newton methods
(IN) and the linear solvers degrade in the cases of

Large Deformation; Near Incompressibility; High Anisotropy.
We use an overlapping Schwarz preconditioner and propose a nonlinearly
preconditioned Newton’s method based on nonlinear elimination to
accelerate the convergence of linear and nonlinear iterations, respectively.

Nonlinear Preconditioning Based on Nonlinear Elimination

Denote the nonlinear system discretized from (2) by

F (u∗) = 0

where F : Rn 7→ Rn. Newton’s method finds a sequence of improving
approximate solutions iteratively u(k+1) = u(k) −

(
F ′(u(k))

)−1 F (u(k)).

I Convergence of Newton’s method:

e(k+1) = −
(

F ′(u(k))
)−1

〈
1
2

F ′′(u(k))e(k), e(k)
〉

+O(‖e(k)‖3).

Here e(k) = u∗ − u(k) is the error of the k th approximate solution.
I Key idea:

Eliminate some "subfunctions" of F to balance the overall nonlinearity.
I Quantitative characterization of the nonlinearity:

F (u(k+1)) = F (u(k)) + F ′(u(k))p(k) +

〈
1
2

F ′′(u(k) + θp(k))p(k), p(k)
〉

≈
〈

F ′′(u(k) + θp(k))p(k), p(k)
〉
.

High nonlinearity ∼ Large residual.
I Nonlinear elimination:

I Find "bad" DOF set Sb from S = {1, · · · , n}, according to the residual

Vb = {v | v = (v1, · · · , vn)
T ∈ Rn, vk = 0, if k 6∈ Sb}.

I Given an approximation u, NE finds correction by solving ub ∈ Vb such
that

Fb(ub) := RbF (ub + u) = 0.

Inexact Newton with Nonlinear Elimination Preconditioner

Algorithm (IN-NE)
Step 1. Compute the next approximate solution u(k+1) by solving

F (u) = 0

with one step of IN iteration using u(k) as the initial guess.
Step 2. (Nonlinearity checking)

2.1 If ‖F (u(k+1))‖ < %1‖F (u(k))‖, go to Step 1.
2.2 Finding “bad" d.o.f. by

Sb := {j ∈ S
∣∣ |Fj(u(k+1))| > %2‖F (u(k+1))‖∞}.

And extend Sb to Sδb by adding the neighboring DOFs.
2.3 If #(Sδb) < %3n, go to Step 3. Otherwise, go to Step 1.

Step 3. Compute the correction uδb ∈ Vb by solving the subproblem
approximately

F δ
b(u

δ
b) := Rδ

bF (uδb + u(k+1)) = 0,

with an initial guess uδb = 0.Update u(k+1)← uδb + u(k+1). Go to
Step 1.

I Three control parameters:
%1 the tolerance for the reduction of the residual norm;
%2 the tolerance to pick up the bad variables and equations;
%3 the tolerance to limit the size of the subproblem.

I Boundary effect:
I If the nonlinear elimination just on Sb, the residual near the boundaries

of the eliminating domains would become very large.
I To ease this phenomenon, we extend the index set Sb to Sδb by adding

the neighboring DOFs, of which the distances to Sb are smaller than δ.

Test Examples

We consider the polyconvex energy functional

ψA = ψisochoric + ψvolumetric + ψti

:= c1

(
I1

I1/3
3

− 3

)
+ ε1

(
Iε2
3 +

1
Iε2
3
− 2

)
+

2∑
i=1

α1

〈
I1J(i)

4 − J(i)
5 − 2

〉α2
.

Based on the parameter sets of the model ψA in Table. 1, we propose
three test examples to investigate the performance of our algorithms for
the case of large deformation, near incompressibility and high anisotropy.

Set Layer c1(kPa) ε1(kPa) ε2(-) α1(kPa) α2 Purpose
L – 1.0 1.0 1.0 0.0 0.0 Deformations by different pulls

C1 – 17.5 4.998 2.4 0.0 0.0
Different penalties for compressiblityC2 – 17.5 49.98 2.4 0.0 0.0

C3 – 17.5 499.8 2.4 0.0 0.0

A1
Adv. 7.5 100.0 20.0 1.5e10 20.0

Anisotropic arterial walls

Med. 17.5 100.0 50.0 5.0e5 7.0

A2
Adv. 6.6 23.9 10 1503.0 6.3
Med. 17.5 499.8 2.4 30001.9 5.1

A3
Adv. 7.8 70.0 8.5 1503.0 6.3
Med. 9.2 360.0 9.0 30001.9 5.1

Table 1: Model parameter sets of ψA.

The first example simulates the deformations of a cylindrical rod by
different pulls L1 = 1.e1 Pa, L2 = 1.e2 Pa and L3 = 1.e3 Pa. The rest
examples simulate the artery walls imposing blood pressure 12 kPa.

Numerical Results

I The simulation results for the three examples are depicted as follows

Figure 3: Deformations
by different pulls Figure 4: A diastolic carotid artery

Figure 5: A fibre-reinforced
multilayer artery

I The convergence history
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(a) Example L
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(b) Example C
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(c) Example A

Figure 6: Convergence history of IN and IN-NE

I The parameter-sensitivity tests

%2 = .9, %3 = .3
%1 .9 .95 .98

Global Newton iterations 23 23 24
Total Newton iterations of NE 40 25 23

ρ1 = .95, ρ3 = .3
%2 .8 .9 .95

Global Newton iterations 24 23 25
Total Newton iterations of NE 31 25 23

ρ1 = .95, ρ2 = .9
%3 .1 .2 .3

Global Newton iterations 54 23 23
Total Newton iterations of NE 15 25 25

Table 2: Number of iterations of IN-NE with respect to
different pre-chosen parameters.

Set Poisson’s Ratio
C1 0.125
C2 0.452
C3 0.495

Table 3: Poisson’s ratio of
materials C1, C2 and C3.

mesh \ δ 2 3 4
m0 15 23 23
m1 58 36 26

Table 4: Mesh refinement,
Set A2, ρ0 = .9, ρ1 = .9,
ρ2 = .25.

Concluding Remarks

I We investigated the performance of a nonlinear elimination preconditioner with
applications in computational hyperelasticity.

I A robust strategy of nonlinearity checking was adapted to capture the subregions
with stronger nonlinearity, which coincide with the propagation of the elastic wave.

I We found that the extension for the eliminating index set by adding the neighboring
DOFs is an effective trick to ease the thrashing phenomenon of nonlinear
elimination.
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